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Summary：In the present study, the reaction process of H2S removal by calcined phosphate ore 
slurry was investigated by XRD and kinetics analysis. It was found that the absorption amount of 

H2S was 69.47 mg in 200 min, and 70.09% of the absorption caused by calcium oxide, indicating 
that the reaction was mainly the action of calcium oxide. Furthermore, it is showed that Fe2O3 played 

an important role in the removal process. Fe(III) can be dissolved form the phosphate ore, and 
became an efficiently catalytic oxidant. H2S can be catalytically oxidized by Fe(III)/Fe(II) system. It 

was indicated that about 30% removal of H2S was caused by Fe(III). By the model analysis, the 
leaching reaction was belonged to the diffusion chemical reaction mixing control model. And the 

activation energy of the reaction was 17.224 kJ/mol obtained from the Arrhenius equation, which 
further proved that the reaction belonged to the mixed control model. 
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Introduction 

 

Hydrogen sulfide (H2S) is a typical toxic gas, 

which exits in natural gas, biogas petroleum, and other 

waste gas. It has a characteristic smell of rotten eggs 

[1-3]. H2S is also produced in association with some 

industrial processes, such as gas streams from yellow 

phosphorus tail gas, natural gas processing, petroleum 

refining, paper and pulp manufacturing, and solid waste 

processing plants [4, 5]. Because of the significant 

economic and environmental repercussions for the H2S 

separation and purification, lots of researchers 

developed many kinds of methods for the H2S pollution 

control, including chemical oxidation, biological 

treatment, adsorption, etc [6-10]. Claus process is the 

most ancient removal methods of H2S, which uses SO2 

to oxide H2S, and the by-product is sulfur, while the 

sulfur conversion rate can be 94% ~ 98%, but there is a 

risk of secondary pollution by SO2 and H2S [11]. 

 

In our earlier study for the removal of H2S [12], 

a kind of natural mineral, phosphate ore, had been 

developed as a new absorbent instead of traditional 

absorbent. Due to the Ca-based chemical composition, 

the phosphate ore showed an excellent performance on 

the removal of H2S. However, the reaction mechanism 

was still not clear. Thus, in this study, the reaction 

mechanism has been further analyzed to investigate the 

role of reaction between H2S and phosphate ore. 
 

Experimental 
 

In the present study, the raw samples of 

phosphate ore were obtained from Kunyang Phosphate 

Mine in Yunnan Province, China. To clean out the 

floatation [13, 14] on the particle surface, the samples 

were washed by distilled water twice. After calcination 

at 800~1000℃ for about 2h, the samples were crushed, 

ground, and then sieved to 200 mesh (about 74μm). 

Chemical analysis of the phosphate ore was carried out 

by standard gravimetric, volumetric and spectrometric 

methods, and the results are shown in Table-1. 

 

The schematic experimental set-up is shown in 

Fig. 1. The simulated H2S flue gas was prepared by the 

static air bag method. The mixed gas of H2S, O2 and N2 

were controlled by the flow-meter to make a required 

concentration. The well-prepared uniform mixture was 

called H2S(in). In a cylinder-shaped glass reactor, 

H2S(in) was reacted with suspended phosphate ore 

slurry. Furthermore, a homoeothermic water bath of 

magnetic stirrer was used to control the reaction 

temperature and agitation rate. Finally, the concentration 

of H2S come out of the reactor (H2S(out)) was detected 

by the multi-functional flue gas analyzer (RBRJ2KN, 

Germany). XRD was applied to identify the 

mineralogical constituents of the raw, calcined and 

reacted phosphate ore samples. The conditions of H2S 

removal experiments were set as below: temperature 

was 20℃, gas flow rate was 300 ml/min, H2S 

concentration was 1,500 mg/m3, agitation rate was 

1,000 r/min and oxygen content was 0.5%. 
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Fig 1: The schematic diagram of the experimental apparatus. 

1. gas cylinder 2.mass flow meter 3.digital display instrument 4.gas mixer 5.reactor 

6. homoeothermic water bath of magnetic stirrer 7. clip 8.tail gas absorption 9.u-shaped gas drying tube 10. atmosphere 

sampling instrument 11. flue gas analyzer 

 

Table-1: Phosphate ore composition before and after calcinations (%). 
Components Al2O3 Ca5(PO4)3F SiO2 Fe2O3 MgCO3 CaCO3 Others 

Raw ore 0.77 66.60 1.91 0.56 12.67 11.83 5.66 

Components Al2O3 Ca5(PO4)3F SiO2 Fe2O3 MgO CaO Others 

Calcinated ore 0.83 73.56 1.82 0.60 6.32 6.39 10.48 

 

 

A-Ca5(PO4)3F, B-SiO2, C-CaMg(CO3)2, D-Fe2O3, E-Ca5(PO4)3(OH), F-Fe3O4, G-sulfur 

Fig. 2: XRD spectra: 2-1 Raw ore, 2-2 Calcined for 60 min at 900℃ and 2-3 After reaction with H2S for 120 

min. 

2-3 

2-1 2-2 
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Results and Discussion 
 
XRD analysis 

 
XRD determination was used to investigate 

the change in chemical composition or structure 

occurred in samples mentioned above. It is obtained 

from Fig. 3 that the main minerals of the raw samples 

were calcite, fluorapatite and carbonate-fluorapatite. 

After calcination, the main minerals became to 

calcium oxide and fluorapatite, which agreed with 

Table-1. Thus, the removal of H2S by calcined 

phosphate ore was mainly due to the calcium oxide, 

the reaction process was presented as follows [17]: 

  HHSlSHgSH )()( 22
   (1) 

  HSHS 2
     (2) 

  OHCOHOC 2aa 2

2    (3) 

OHOHH 2 
     (4) 

OHHSCaSHOC 222 )(2a    (5) 

 

 

 

Fig. 3: The removal rate of H2S with the change of 

the reaction time. 

 

The XRD results also showed that the main 

minerals of the reacted samples were fluorapatite, 

silica, ferroferric oxide and sulfur (Fig. 3-3). The 

calcium oxide disappeared after reaction is due to the 

calcium absorption of hydrogen sulfide in the process 

of reaction after dissolved in the liquid phase [18]. A 

redox reaction of H2S occurred by the detection of 

sulfur, which was not included in the equation 

(1)-(5). 

 

The role of Fe2O3 in the ore 

 

It was not only the redox reaction of H2S, 

but also can be obtained from Fig. 3 that the H2S 

absorb capacity of phosphate ore was 69.47mg within 

200 min. Through the analysis of the components 

before and after reaction, the consumed mass of 

calcium oxide was 40.1 mg, and the mass converted 

to H2S was 48.69 mg by equation (5). Therefore, the 

removal percentage of H2S by calcium oxide was 

70.09%.  

 

By a further investigation, it was found that 

Fe2O3 could be the key point of the H2S removal 

process [19]. As the results showed above, iron oxide 

changed to ferroferric oxide after reaction. Fe(Ⅲ) is 

an effective oxidant, and often used in the 

liquid-phase catalytic oxidation reaction[20,21]. 

Based on the following equation (6)~(8), it can be 

conclude that Fe2O3 played an important role in the 

removal of H2S by phosphate ore slurry.  

 
  HSFFSH 2e2e2 23

2
   (6) 

  32

22 222
2

1
FeOHFeOHO    (7) 

Overall reaction: 

 SOHOSH Fe

222
2

1     (8) 

 

Kinetics analysis of the reaction process 

 

From the view point of many researchers, 

the leaching performance of calcium from the ore 

could be attributed to the gas-liquid-solid reaction 

process, and the kinetic model varies with the control 

steps [10,22]. If the reaction interface was controlled 

by a chemical reaction, the relationship between the 

calcium leaching rate and the reaction time should be 

in accordance with equation (9). 

  ktX 
3/1

11       (9) 

If the reaction was diffusion-controlled, the 

relationship between calcium leaching rate and time 

should be consistent with equation (10). 

 

  ktXX 
3/2

1
3

2
1      (10) 
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Table-2: Correlation coefficients (R2) of three kinetic models at different leaching temperature. 

T/℃ 
  ktX 

3/1
11    ktXX 

3/2
1

3

2
1

       ktXX 


111ln
3

1 3/1  

b R2 b R2 b R2 

20 0.0399 0.8217 0.0028 0.9462 0.0011 0.9555 

30 0.0486 0.7801 0.0047 0.9225 0.0024 0.9524 

40 0.044 0.838 0.0029 0.912 0.0003 0.9288 

50 0.0433 0.8671 0.0023 0.9217 0.0007 0.9477 

60 0.0405 0.9146 0.0009 0.9582 -0.0003 0.9868 

 

Li proposed a dynamic model (equation (10)) 

suitable for diffusion-chemical reaction mixing 

control based on a thorough study of the 

characteristics of manganese leaching rate with 

particle size during leaching, where k is the chemical 

reaction rate and X is the manganese leaching rate 

[23]. 

      ktXX 


111ln
3

1 3/1    (11) 

 

The relationship between the leaching rate 

of manganese and the reaction time at different 

temperatures was well studied and fitted according to 

the three models mentioned above. The resulting 

constant term k and the linear fit ratio were shown in 

Table-2. The linear fitting rate of the diffusion control 

and chemical reaction control models was low, while 

the linear fit rate of the mixed control model was 

above 0.92, indicating that the reaction in the present 

study was a mixed control process. According to the 

equation (11), the linear relationship between 

different temperatures can be calculated and 

presented in Fig. 4, and the k values at different 

temperatures were shown in Table-3. 

 

Fig. 4: Relationship between 
     111ln

3

1 3/1



XX

 

and time. 

Table-3: Value of k under different temperature. 
T/℃ 20 30 40 50 60 

10000*k 2 3 3 4 5 

 

For most chemical reactions, the relationship 

between the reaction rate and temperature can be 

expressed by the Arrhenius equation (12) [24]. The 

activation energy can be obtained graphically. Take 

the natural logarithm of the Arrhenius equation (13), 

and then the activation energy of the reaction can be 

obtained by equation (14). 

RT

Ea

eAk


 0       (12) 

0ln
1

ln A
TR

E
k a      (13) 

RkEa         (14) 

In this study, the reaction rate k at different 

temperatures and the corresponding lnk value was 

calculated by equation (14). Then the relationship 

between 1/T and lnk was shown in Fig. 5. Finally, the 

reaction activation energy was calculated to be 

17.224 kJ/mol. It was found that the activation energy 

was 12-42 kJ/mol when the chemical reaction process 

was mixed control model [24]. Then, the leaching 

reaction in this study was further proved belonged to 

the diffusion-chemical reaction mixed control 

process. 

 

 

Fig. 5: Relationship between lnk and 1/T. 
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Conclusion 

 

In summary, the process of H2S removal by 

calcined phosphate ore slurry was investigated by 

XRD and kinetics analysis. The total amount of H2S 

absorbed by the ore in 200 min was 69.47 mg. 

Through the analysis of the components before and 

after the mineral reaction, the mass of calcium oxide 

consumed in the reaction was 40.1 mg, and the mass 

converted to H2S was 48.69 mg, and the ratio of total 

hydrogen sulfide absorption was 70.09%, indicating 

that the reaction was mainly the action of calcium 

oxide. Furthermore, Fe2O3 played an important role 

in the removal process because Fe(Ⅲ) was an 

effective oxidant, which could cause the other about 

30% removal of H2S. 

 

Through model analysis, the leaching 

reaction belonged to the diffusion chemical reaction 

mixing control model. The rate constants were 

calculated by the relationship between the model 

equations and time at different temperatures. The 

activation energy of the reaction was 17.224 kJ/mol 

obtained from the Arrhenius equation, which further 

proved that the reaction belonged to the mixed 

control model. 
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